Next-generation Sensor system for ultrasonic wall thickness monitoring

Steve Strachan VP Sales N.A.

Jim Barshinger PhD President & CTO

Sensor Networks, Inc. Boalsburg, PA www.installedsensors.com 814-466-7207

EPRI Buried Pipeline Integrity Group (BPIG) February 17, 2016

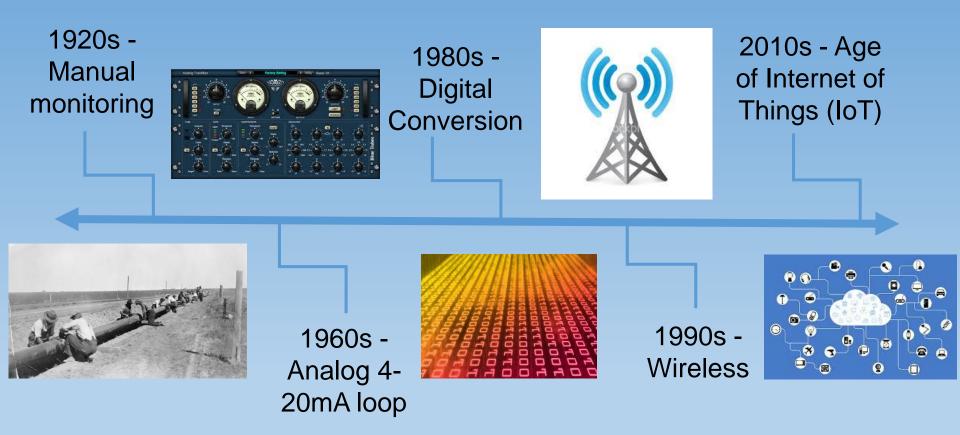
Outline

- Motivation
- Inspection vs. monitoring/trending
- The power of data through continuous monitoring/trending
- Applications
- System requirements and concept

Total Annual US Cost of Corrosion: \$>1T¹

Utilities: \$47.9B²

Electric Utilities: \$6.9B² (Nuclear Power: \$4.2B)


Installed ultrasonic sensors for asset-integrity

2013 Estimate - <u>http://www.g2mtlabs.com/2011/06/nace-cost-of-corrosion-study-update/</u>
2003 Estimates - NACE US Corrosion Case Study 2003

Data Monitoring Evolution

Why installed sensors today?

Costs (\$) associated with manual inspections

- Pre-inspection activities:
 - Excavation
 - Insulation preparation
 - Scaffolding
- Access, permitting, approvals
- Personnel cost increasing- technicians, equipment, training, etc.
- Monitoring costs decreasing wireless, battery technology, IOT, power harvesting, etc.

Costs (intangibles)

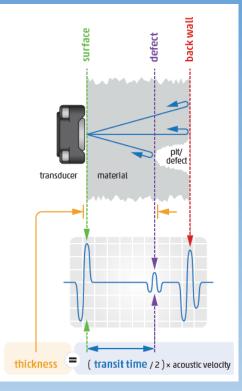
- Safety ropes, ladders, radiation, non-invasive, etc.
- More informed decision making dig holes one time and benefit for potentially years of data, better planning for asset replacement, outage planning, etc.
- Time/productivity short & long term decision making/planning

Installed vs Manual UT Systems

Corrosion/Erosion management

- Trending (wall loss per day/week/month, etc.)
- Inspection (is the pipe going to leak or fail)
- Verification of RBI, inhibitor, or other corrosion mitigation techniques

Complementary UT technologies


- Single point manual thickness readings
- Large area manual phased array scanning
- Long range guided wave UT collars

EPRI BPIG 2.17.2016

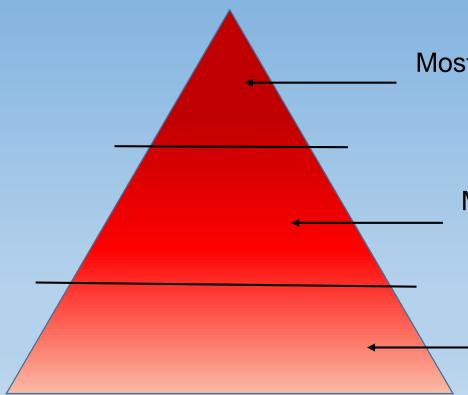
Technology Comparisons

VS manual UT

- Accuracy and precision is improved due to permanent installation and removal of operator factors resulting in better data quality and trending.
- Installed UT sensors can replace manual UT points, particularly for high cost or critical locations.
- Can augment manual UT locations with a semi-continuous data stream.

VS LRUT

- Point, precise measurement vs. area coverage and screening.
- Use permanently installed sensors to complement LRUT, placing sensors at identified areas of interest.


VS PAUT

• Complement PAUT flaw detection with permanently installed monitoring using shear wave transducers.

The Inspection/Monitoring Pyramid

Cost vs. Necessity

• WHERE would I want to put an installed sensor and WHY?

Most expensive/critical areas to inspect (circa 2005)

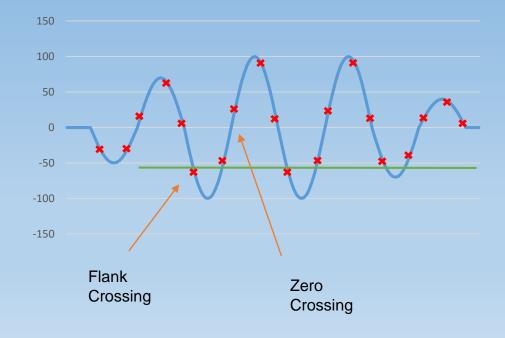
Moderately expensive/critical areas to inspect (circa 2015)

Least expensive/critical areas to inspect (circa 2020 and beyond)

EPRI BPIG 2.17.2016

Factors Eliminated From Using Installed Monitoring Systems

Precision


Accuracy

Resolution

Operator variability Transducer placement variability Transducer coupling variability Sound velocity uniformity Measurement repeatability Re-measurements

- Instantaneous
- More frequent (trending)

Data Accessibility

Installed Sensor Corrosion Monitoring

Internal Diameter (ID) vs. Outside Diameter (OD)

- ID measurements: Sensor placed on OD, measure ID (piping)
 - Coatings ... recommended removal, however, if thin enough, can be calibrated out using dual sensor technology
 - Insulation ... can insulate over top of some sensors, not useful for CUI applications
- OD measurements: Sensor placed on ID, measure OD (tanks/containers)
 - Requires environmentally protected/housed, etc.
 - Data communications can be limited often hard wired

Permanent (PMOD) vs. Temporary (TMOD) Solutions

- Magnetic
- Banded
- Adhere
- Clamped
- Weld direct or via bracket

Installed Sensor Corrosion Monitoring (ctd.)

Coverage

- Single point or multi-point/channel instruments
 - Grid, matrix, array, indiscriminate points (1"x1" housing w/ .250" contact face)
- High temperature & low temperature
 - Low: -30F 300F
 - High: -90F 900F

Communication

- Tethered (Modbus / RS-485) ... manual data collection
- Cellular
 - automated to log readings in defined intervals
- Wireless
- Other (RPMA, Lora, etc.)

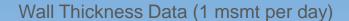
Components

- Tablet (commissioning/data collection)
- Instrument (single/multi-channel)
- Sensors

Wall Thickness Data (1 msmt per year)

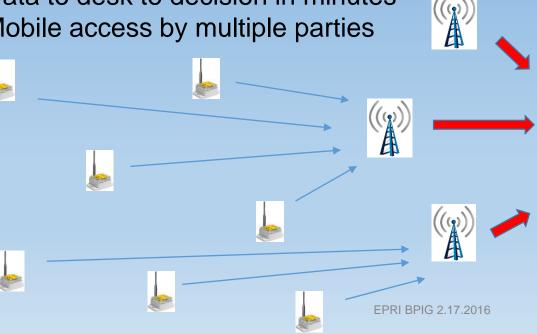
- Sufficient for inspection probably NOT for monitoring
 - 1/1/2013 inspection = 10.00mm
 - 12/30/2013 inspection = 9.77mm
- Gross corrosion rate cannot calculate, not enough information

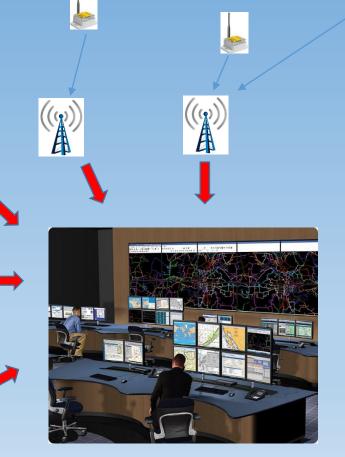
Wall Thickness Data (1 msmt per month)


- Various corrosion rates evident
- Trends evident but still large uncertainty due to measurement precision
- Summary better!

Wall Thickness Data (1 msmt per week)

- Various corrosion rates evident
- Regression can be used to obtain accurate corrosion rates over medium time scales.

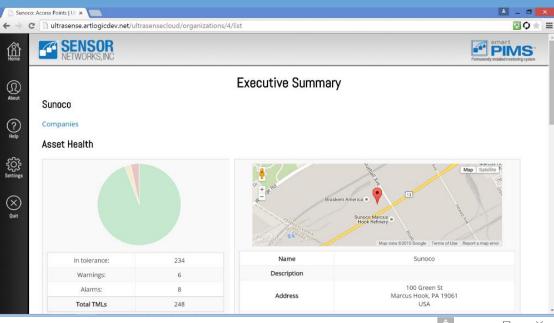

- Various corrosion rates evident
- Regression can be used to remove measurement noise and produce very accurate corrosion rate data
- GREAT!


Data-to-Desk & The Internet of Things (IoT)

Remote sensors leverage low-cost ubiquitous communication infrastructure

- Modbus / RS-485
- Cellular
- Satellite
- WiFi
- Etc.

24/7 asset health monitoring Data to desk to decision in minutes Mobile access by multiple parties


Data/Cyber Security

	Proprietary (In-House) Network Public Network				
Cost	Expensive (To purchase, manage & maintain)	Cheap			
Control	Managed internally (good & bad)	Rely on outside data repository (cloud) Amazon Web Services, Google Cloud, etc., standard encryption schemes: HTTPS			
Compromise-ability	Low	Medium			
Data Relevancy	Confidential / regulated: Ex. SSNs, medical records, salaries, banking information etc.	Not Relevant: Ex. Thickness data, asset temperatures & pressures			
Access	Within Site or through VPN	Global			

Web-based Data Management

- Remote collaboration / accessibility
- Archiving & record retention simplicity
- Alarms & Warnings
 - Ex. .500", .300", .100"
- Automated reporting
- Google Maps & GPS

PI-DSI0041-1 (Probe) Reac 🗙

- \Box \times

← ⇒ C 🗋 www.	.smartpims.com/ult	rasensecloud/sens	or/1583/list					Q. 🛽	∞ 🗘 😒
SENSOR NETWORKS, INC		9						Jim Barshinger	
SNI → malAP-0001 → malAP-0002-1	Probe #PI-DSI0041-1 Companies > SNI > Bayview > G	reen Diesel, Unit 12 > Unit 12 Pipi	ng > 12-360HF > PI-DSI0041	4					
→ mil Bayview → mil Green Diesel, Unit 12 → mil Unit 12 Piping → mil 12-113HF → mil 12-114HF	0.55							25 (chart by amCharts
ind 12-112HF ind 12-360HF ind 12-360HF ind 12-360HF ind 12-359HF ind 12-359HF	9.50		~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			25.0
← ml AP-0001	9.40 2013 2013 Peb Mer From: 01/01/2013 toi 12/30/2		Apr 300	May	Jun Jul 2014 re	Aug rb Mar Apr	Sep Oct	Nov Atrg Sep Oct Nov Zoomi (7.days.) [3.days.] [3.month	
	Ascan								
	#	Timestamp	Thickness (mm)	Temp Comp Thickness (mm)	Temp (°C)	Velocity (m/s)	Corrosion Rate (mm/year, short)	Corrosion Rati (mm/year, long	ie ig)
	406870 Jan. 2, 20	15, noon	9.550	9.626	26.0	5900.0	-0.0	-0.0	
	100 105 105 105 105 105 105 105	17.283 22.784 28.315	M	50.44 55.972 ei.503	67.054 72.063 78.007 83.028	8 99.159 94.49 100.222	105.723 111.284 116.815 122.	347 127.878 133.40 138.04 144.	.472 150.003
	1.0								

Field Applications

Buried / Underground Assets:

- Pigables verification of ILI reports
- Unpigables information & general maintenance
- Known defect monitoring from guided wave/other NDE mass screening techniques
- Single point or mat sensors
 - Low profile / rugged / durable
 - Tethered, no battery (20+ year life)

Oil and Gas / Petrochemical

Crude Unit Overhead w/ chemical Injection and/or Water Washes

 Utilization of installed UT sensors for corrosion rate calculations of inhibitor optimization

Sand erosion in offshore production Naphthenic acid detection

High temperature monitoring

Baseline of new infrastructure

 Flow, pressure, product evaluation for understanding effects on localized corrosion

Daily monitoring of known defects b/t outages

Power Generation

- High point vent (gas void detection, measurement & evaluation)
- Microbiological corrosion (MIC) monitoring
- Flow accelerated corrosion (FAC) trending/modeling

The Future for Installed Sensors

- Internet of Things (IoT) is fueling the flame
 - In the next 5 years*:
 - \$6 trillion will be spend on equipment and infrastructure
 - IoT will connect over 20 billion assets
 - Projected revenues from IoT are estimated at \$14.4 trillion
- Communication / Data Transmission
 - Internal vs. public networks (trending to public)
 - Why public?
 - Cheaper
 - More widespread, data accessibility
 - Google/Amazon/etc. are getting better at security/managing data
 - Faster acquisition, higher bandwidth, longer range
- Lower cost per point sensors
- Longer battery life / further reaching
- Other?

Summary

The world is changing ... use it to your advantage!

Installed sensors can be used to optimize **inspection** as well as **monitoring** for corrosion/erosion & cracks

Installed sensors should be evaluated on a "cost per point" basis as it relates to tangible & intangible accumulated costs over an assets' useful life

The power of data ... predictive uptime, real-time asset health monitoring, reduced unplanned outages

Applications for installed sensors exist everywhere, know your short and long term goals for the project

Questions

Installed ultrasonic sensors for asset-integrity monitoring

Steve Strachan Sensor Networks, Inc. Boalsburg, PA (USA) www.installedsensors.com 814-466-7207