NDT Meets the Internet of Things (IoT)

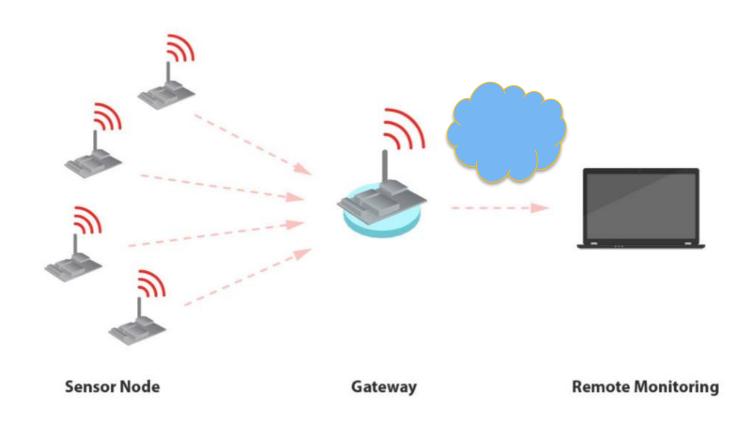
Steve Strachan *
Vice President - Sales
Sensor Networks, Inc.
Boalsburg, PA

* Presented by Bruce Pellegrino

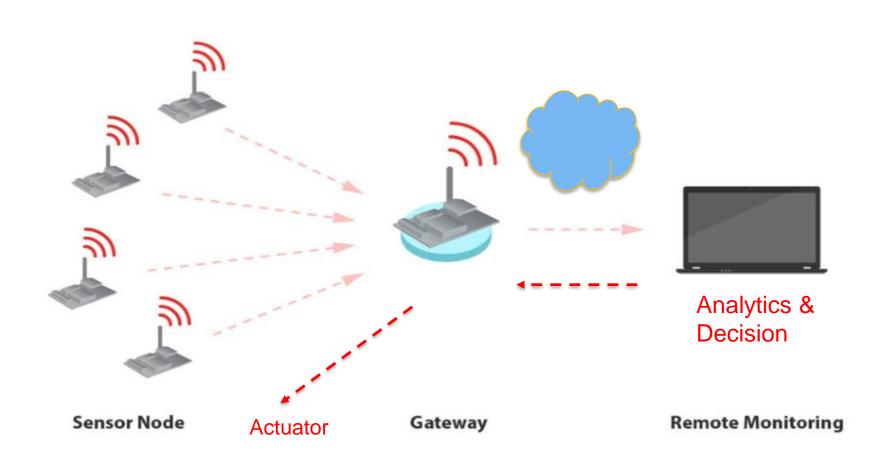
Agenda

- IoT explained
- Everyday IoT examples
- IoT meets NDT
- The future for IoT & NDT
- Conclusion

The Internet of Things


- Industrial Internet of Things : GE
- Internet of Everything: Cisco
- Internet of Things That Matter: Hitachi
- Internet of Things for Business: Business Insider
- Not your father's Internet : Bruce

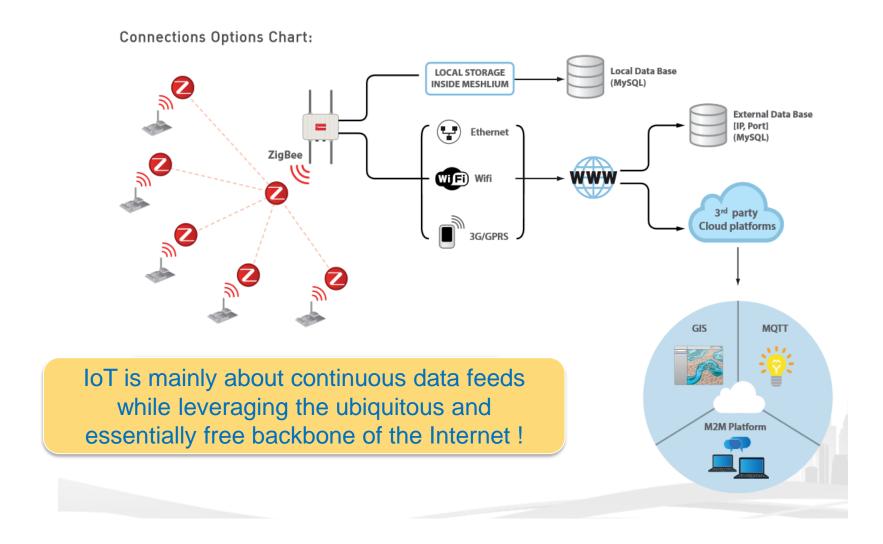
IoT: "Where Physical and Digital Worlds Meet"


Quotable Quotes

- Think tank Machina Research says the IoT market will swell to \$4.3 trillion USD by 2020. Gartner predicts that the number of IoT devices will grow to 26 billion units by 2020 in the US. McKinsey & Co predict 30 billion devices!
- In Cisco's "Internet of Everything" 2013 report, the highest percentage (27%) of value in future IoT revenue will be in manufacturing. And, an oil company with \$50 billion in annual revenue could add about \$1 billion in profit if it was able to fully optimize the IoT solutions available to it.
- "Smart" IoT/M2M-enabled factories alone could reap \$1.95 trillion in profits between now and 2022, thanks to sensors incorporated into machines and processes.
- Accenture's 2014 report, "Driving Unconventional Growth Through the Industrial Internet of Things," finds that manufacturers could boost their efficiency by 30% using IoT.

Uni-directional Wireless Data Paths

Bi-directional Wireless Data Paths


IoT Steps

1		Se	n	S	e

- 2. Communicate
 - a) Local
 - b) Backhaul
- 3. Display
- 4. Analyze-Decide

1. Sense	2. Communicate		3. Display	4. Analyse / Decide	
50% HW/SW	2a. Local	2b.Backhaul	100% SW	100% SW	
UT Thickness	25% HW/ 75% SW	25% HW/ 75% SW	Raw Data	Predict	
UT - Cracking	ISM	Satellite	Processed data	Trend	
Other UT	Zigbee	DCS	Hierarchy	Alarm	
Guided Wave	Cell	Ethernet	2 D / 3 D Maps	Boolean	
Acoustic / AE	Wifi	Cell	Image	Control	
Other NDT	Custom	Cloud	Process Variable	Knowledge	
Vibration	WiHART	Security	KPIs	Closed-loop	
Location GPS	RS-485			Big Data	
Micro-GPS	RPMA			Set points, limits	
Radiation	ISA-100				
Temp	LoRa				
Pressure	Bluetooth				
Flow	Modbus				
Load	Foundation Fieldbus				
A/V					
InfrRed	Attributes				
Position	Low power				
Proximity	Long range				
Current / CP	Bandwidth				
Acoustic / Tank	Low cost				
Air / Hazard	Small size				
On / Off	Integrated with sensor				
Hydrocarbons					
Moisture					
ER					
PH					
LPR					
Multi-modal					

IoT Connectivity: Asset to Desktop

IoT is all around us ...

- Supply Chain RFID (Radio Frequency Identification) technology 'chips' were developed in 90s' as inventory mgmt. system
- **Logistics** GPS for traffic conditions, package/parcel tracking, fleet management, etc.
- Consumer & Industrial Control smartHome: security systems, temperature, lighting, appliances, electronics, swimming pools, etc.
- **M2M** smartGrid, vehicle diagnostics, vibration, flow, pressure, current sensing devices w/ programmed instruction
- **People and other mammals** health monitoring, movement studies, NFL player tracking, Race Horses

Many IoT apps serving all segments

NDT meets IoT ... Why?

NDT issues today:

- Productivity
- Aging workforce
- Not enough experts (Level IIIs)
- Do more with less
- Need information/data/reports:
 - Better!
 - Faster! (Real time)
 - Cheaper!

NDT Examples:

Good

- Training: Remote Class Room
- RVI, UT, ET: Remote Collaboration
- UT Thickness: Remote wall-thickness monitoring for corrosion
- Vibration Monitoring of pumps & motors

Possible

RT: Film reading for redundancy or at a lower cost

Bad:

■ ECT: Independent 3rd-party assessment of real-time signal & data for Nuclear Steam Gen

IoT for Remote Collaboration

Connectivity enabled Remote Visual Borescopes Expert can interact with technician – REALTIME!

Talk, text, chat, view, etc....

Accept/reject decisions made immediately Result:

- Assets back to work sooner (\$\)
- No re-work (**!** time)
- Satisfied customer (work)

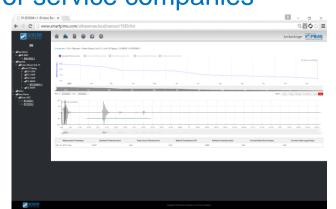
IoT for Remote Asset Condition Monitoring

Installed sensors (permanently or temporarily) to the asset

Data availability IMMEDIATELY ... 24x7

Pass-through cost savings to clients: scaffolding, excavation, e

Inspection vs. monitoring



Monitoring – based on process conditions, turnarounds/ou

& maintenance intervals can be optimized

Potential for new revenue streams for service companies

- Installations & device mgmt.
- Pay per point
- Data management

IoT for Remote Inspection Services

Procedure mgmt. over internal network: share, update, review Local data collection w/ remote expert oversight and fleet management:

- Technicians
- Equipment
- Process
- Data

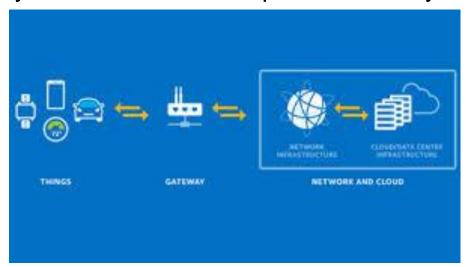
Conclusions

- IoT is all around us look for ways to use it to become more productive
- Leverage the infrastructure and tools around you
- Let IoT help create competitive advantages
- Become familiar with data transmission protocols
- IoT is not going away and will get bigger ... delegate a person to oversee your IoT efforts

Thank you for your participation in the NDTMA 2016 Annual Conference

Back-up slides

The IoT IS ...


• An information technology conduit which leverages a preexisting, no/low cost, infrastructure which can be public or private to allow the free flow of real-time (or near) data to provide a platform by which assets/processes can be monitored for safety,

efficiency or economic optimization

The IoT IS ...

A means by which assets can be sensed and controlled remotely via installed sensors across an existing network infrastructure creating opportunities for more direct integration between the physical world and computer-based systems

The IoT IS ...

■ The network of physical objects or "things" embedded with electronics, software, sensors and connectivity to exchange data with people or other connected devices

